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Sunmnary

2 The purpose of this paper is to describe an accurate, yet
economical, method for computing temperature effects in laminar
lubricating films in two dimensions. The procedure presented here is
a sequel to one presented in Leedsin 1986 that was carried out for
the one-dimensional case.,

Because of the marked dependence of lubricant viscosity on
temperature, the effect of viscosity variation both across and -

along a lubricating film can dwarf other deviations from ideal - -
constant-property lubrication.

In practice, a thermohydrodynamic 4program will involve
simultaneous solution of the film lubrication problem, together
with heat conduction in a solid, complex structure. The extent of
computation required makes economy in numerical processing of
utmost importance. In pursuit of such economy, we here use techni-
ques similar to those for Gaussian quadrature. We show that, for
many purposes, the use of just two properly positioned temperatures
(Lobatto points) characterizes well the transverse temperature
distribution. .
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1. INTRODUCTION:

The purpose of this paper is to describe an accurate, yet
economical, method for computing temperature effects in laminar
lubricating films. The procedure presented here is a sequel to one
presented in Leeds in 1986.1

Because of the marked dependence of lubricant viscosity on
temperature, the effect of viscosity variation both across and
along a lubricating film can dwarf other deviations from "ideal"
constant-property lubrication. In two recent papers 2,3 Khonsari has
summarized the growing literature concerned with the present
subject. Consequently, we shall not undertake a survey here, but
refer only to those articles used for support or comparisons.

In practice, a thermohydrodynamics A program will involve
simultaneous solution of the film lubrication problem, together
with heat conduction in a solid, complex structure. The extent of
computation required makes economy in numerical processing of
utmost importance. In pursuit of such economy, we here use techni-
ques similar to those for Gaussian quadrature. We show that, for
many purposes, the use of just two properly positioned temperatures
characterizes well the transverse temperature distribution.

2. NOMENCLATURE

Single-underline _ denotes a Legendre coefficient.
Double-underline denotes a vector.
Certain matrices are defined in place in section 7.

A flow vector, defined by eq. 4.03
B flow vector, defined by eq. 4.04
Cp specific heat, J/kg-C
h film thickness, m
k thermal conductivity, J/Csm
L subscript for lower surface
m mass flux vector, kg/sm 2

p pressure, N/m2

Pk Legendre polynomial of order k
t time, sec
T temperature, deg C
u velocity of fluid in x-direction, m/s
,, subscript for upper surface
v velocity of fluid in y-direction, m/s
v total velocity vector, e.u + eyv + ezw
V velocity vector, eu + v, m7s
w velocity of fluid-in z-direction, m/s
Wk weight for ordinate at C, , Lobatto quadrature
x longitudinal position along film, m
y lateral position along film, m
z position normal to film, measured from midsurface
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dissipation, J/sm 3 , defined by eq. 4.03
P viscosity, Ns/m2

fluidity = li/, m2 /Ns
2z/h, fractional transverse position

p density, kg/m3

3. LOBATTO INTERPOLATION AND QUADRATURE:

In general terms, the problem to be treated is one of three-
dimensional heat convection. A numerical solution is effected by
sampling the velocities, pressure and temperature over a chosen
grid of points, and interlinking their values by algorithms that
incorporate appropriate physical laws. Generally speaking, the
fewer sample points required, the less the computational effort.
Consequently, we ask: "What are the best cross-film sampling
positions?" The answer is provided by the theory of orthogonal
polynomials.

4,5

Figure 1 shows a section of lubricating film, with the normal
displacement, C, scaled to be -1 on the lower wall, and +1 on the

upper. At certain locations, %k, we intend to obtain sample values
of the flow variables and to deduce therefrom certain intermediate
cross-film values, derivatives and integrals. For illustrative
purposes, consider the temperatures Tk = T(Ck). These are assumed
to be known at C=1 and <=-1, and at N intermediate points.

If the intermediate sample points are equispaced, and a
polynomial for T(?) is passed through them, the excursions of such
a polynomial between points can become unacceptably large. See, for
example, Fig. 2, where a tenth-degree polynomial is used to
approximate the stepfunction T(C<0) = 1; T(0) = 0 by collocation
at eleven equispaced points. On the other hand, if a tenth-degree
polynomial is collocated at the endpoints (C = -1; % = 1) and at
the zeroes ( k) of the Jacobi polynomial (u) Pa' - () ("Lobatto
points"), conformity to the step function is much better. Indeed,
if the order of the polynomial is increased, equispace interpola-
tion may fail to converge at all, whereas the latter form of
interpolation becomes progressively better.

Not only do the Lobatto points serve well for interpolation
by high-order polynomials, but they also serve for accurate
numerical integration' . It can be shown that N such internally-
selected points permit exact numerical integration of a polynomial
of order 2N+1 over the range -1<C<1. Thus: 0

0
(a) For N interior points, the Lobatto locations (C ) are at the

zeroes of dPN.i(C)/dC = N(N+1)PN-' (C), where Pm(4) is the Legendre
polynomial of order N. _

Availability Oo4.e
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[2.01] IWT(c)dl = ZwkTk
-1

The Lobatto locations, k, and weight factors, Wk, are to be found
in Abramowitz and Stegu76. For N=2, we have:

Location Weiaht
-1 1/6

-1/15 5/6
1/15 5/6

1 1/6

Note that, in contrast to Gaussian quadrature, Lobatto's technique
incorporates endpoint values which, in our case, are known, and
might as well be used.

The approach taken in this paper is to form partial differen-
tial equations in x,y for the Lobatto-point temperatures, with the
transverse temperature distribution given by a collocated polynomi-
al. The "fluidity", = I/p is also collocated to its Lobatto-point
values, tk = CM).

Let us turn now to the analytical development which incor-
porates these ideas.

3. BASIC THERMOHYDRODYNAMIC EQUATIONS:

The equations to be used are for laminar lubrication with a
fluid possessing constant density and constant thermal properties.
The momentum equation is:

[4.011 (/ z) (Pv/z) = ?p

the pressure being independent of "z".

And the energy equation is:

[4.02] pCp (DT/Dt) = k(C2T/)z 2 ) + 0 with:

[4.03] 0 =/az)2

Here the viscosity, p, may depend markedly on the local temperataire
T. In addition, the conservation of mass (or volume) must be
satisfied; i. e.,

[4.04] v7" = 0

Several investigators7 , have justified the use of these
equations by showing that the effects of variations in density,
specific heat, etc., of the lubricant are quite secondary to those
resulting from changes in its viscosity, which usual~v varies
substantially with temperature.
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The boundary conditions to be satisfied by eqs. [4.01 - 4.03]
are as follows. The liquid velocities must conform to the upper
and lower surface motions, and the liquid temperature to the
surface temperatures. At the film peripheries, incoming liquid
temperatures correspond to ambient conditions, whereas outgoing
temperatures derive from the interior where they originate.

5. VELOCITIES. REYNOLDS EQUATION:

To compute the velocities, it is, for several reasons, conven-
ient to use the fluidity expressed as a series in Legendre
polynomials. Thus:

[5.01] Z Zk Pk(

As previously stated, the coefficients LL are here determined by
collocation of the fluidity at the Lobatto points, where its values
are determined by the Tk . A double integration of eq. (5.01] then
yields for V = exu + eyv.

[5.02] V V + A f dj + B TI: dC

where:
1 1

[5.03] A = [Vi, - VL - B SCd ]/['d<]
-1 -i

and:

[5.04] B = (h/2)2  17p

To obtain the lineal mass flux, eq. [5.02] must be integrated
again. The result is:

[5.05] n/p = (Vu + VL) (h/2) - (h/3)LiA (2/3)(0Lo + 2L2/5)

This result is independent of the number of terms in the series
[5.01]. When it is inserted into the mass continuity equation:

[5.06] ah/at + VO(B/p) = 0

the following generalized Reynolds equation results:

[5.07] p' h 3  p = 6(Vt + Vt) 'h + 12(ah/ot) - 27" (i , o)h(Z - :Li

where:

[5.08] Ep = Lo + 0.4L2 - (L3) 2 /(3Lo)

In form, eq. [5.07] differs from the standard Reynolds equation4
only through its last term.
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Now we wish to express our differential equations using the
fractional gap position as transverse coordinate across the film.
Thus:

[5.09] C = 2z/h

where "z" is measured from the midsurface. Taking "x" as a typical
lateral coordinate and "u" as a typical variable, we note that:

[5.10] (au/ax)y,z = (au/ay)y,, - (alog(h)/ax)y (au/6<)x,y

The transverse velocity, w, can be found from mass continuity
via:

(5.11] aw/az = -(au/ax + av/ay) = -(?'V)z

But:

[5.12] (1'7 )z = ( ',)C - C log(h)*(3j/8C)

Substituting [5.12] into [5.11] and integrating, we get:
z

[5.13] w = WL - T{7'L- Clog(h)'(aX/3C)ldz
-h/2

Integration by parts gives:

[5.14] w = WL + Vi'7(h/2) + L' (h/2) - 7C [(h/2)f:dC]
-1

6. TEMPERATURE EQUATION:

To obtain a convenient differential equation for the tempera-
ture, we rewrite eq. [4.02] as:

(6.01]
8T/at + u(3T/ax)yC + v(3T/ay)x,C + (2/h) (aT/8)x~,vw -<V'7(h/2)1 =

(4K/h 2 )(a 2 T/Q2)x,,V + §/(pCp )

To treat the cross-velocity term, we note that kinematics gives:

[6.02] WL + VO'(h/2) = -8(h/2)/at

Substituting [5.14] and [6.02] into [6.01], we get:

[6.03] OT/at + V*' - (1/h) (dT/aC) ((1+<) (6h/at) + 'hf:Ld ]
-1

(4K/h 2 ) () 2 T/)' 2 ) + */(pCp
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All partial derivatives in the foregoing equation are in x,y,,',t
space. There is one such partial differential equation 16.03) in
x,y,t for each Tk.

7. NUMERICAL PROCEDURES:

It is convenient to treat the Tk (xi ,yj ), Ek (xi ,yj) as vector
matrices, and to use matrix notation. We have:

[7.011 T( = ZT P, (W)

[7.02) 1 ( ) = >- Pn ()

Therefore:

[7.02] Tk = ZT Pa (,k) or: Tk = ZCk nTk or: T = CT and: T = C-IT

Also, then:

[7.03] t = CL and: L =c-I

Successive differentiation of [7.01] enables us to write:

[7.03] aT/VC = DT and: )2 T/?Q 2 = ET

Successive integration of [7.02] permits us to write

[7.04] -=L + AFt + BGt and:

[7.05] fvdC = vL(l+ ) + ARC + BSE
-1

To preserve numerical stability, backward differences are used
for the convective terms. Thus, at the point (i,j) we write:

[7.06] u(aT/ax) = abs(uI,j) [Ti, - TI- x, j]; gx = sgn(u ,j)

with a similar expression for v(aT/ay).

Now form the diagonal matrix, Ed, from the diagonal terms of
E, and let Eo = E - Edt . With these definitions, the matrix finite-
difference equation corresponding to [6.03] is:

[7.07] [I/At + abs(u)/Ax + abs(v)/Ay - (4x/h 2)E dT",, J =

Ti,j/At + Iabs(u)Ti-gxji/Ax + Iabs(v)T,,j-gI/Ay + (4K/h 2 )Eo Tj.i +

(1/h) (?'hJVdC)D Tij + 4/pCp
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Here Tne w denotes T(t+At), u, v, t and T belong to the same trans-
verse row ( k), and the integral of velocity is from the lower wall

to Ck.

The explicit form of the difference equation [7.071 is stable
for a large At, such as was used to generate the steady-state
results presented in this report.

8. COMPUTATIONAL RESULTS:

Validation of the computer program was attempted in various
ways. Comparisons were made with the one-dimensional calculations
of Hunter and Zienkiewicz 0, Dowson and Hudson 7 and of Hahn and
Kettleborough8 , who all used the physical properties tabulated
below.

p = 0.13885 expj-p(T-Tamblent)I, Ns/m2; 0.045

pCp = 1.7577 J/m:'C

k = 7.306 E-08 mr2/s

Tamblent = 0 (used as reference, only)

These same properties are used for all examples of this report,
except that fi = 0, instead of 0.045, for the constant-property
calculations.

Dowson and Hudson chose the following bearing characteristics.

L = 0.18288 m; W infinite

Uu = 31.96 m/s; UL = 0

hi = 1.8288 E-04 m; h2 = 0.9144 E-04 m

Figures 3 and 4 compare our results with theirs(b). Agreement is
certainly satisfactory, though not perfect. Dowson and Hudson used
6x = L/20 and a constant Ay = hz/20, whereas we employed Ax = L/30
and N = 8. In these comparisons, as in others made, the reasons for
the observed small discrepancies are difficult to assign. There-
fore, it was decided to write the present program for arbitrary N,
and to use N = 8 as a standard against which to test more approxi-
mate, but faster versions employing N = 2 or 3. To assist others

(b) All dotted curves, except those in Fig. 2, were collocated at
the Lobatto points, and interpolated with an auxiliary plotting
program; i.e. the dotted curves are not everywhere in complete
agreement with the corresponding Legendre polynomial expansions.
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who may wish to make comparisons with their own programs, we list
some results for the above problem in the Appendix.

In Fig. 3, the great reduction in load capacity due to
lubricant warmup is manifest. Of course, in engineering design
practice some allowance for this effect is made by assigning some
lowered constant viscosity corresponding to an estimated tempera-
ture rise.

Figure 4 shows the convergence with N of results obtained
using the present program. There is no perceptible difference
between the results for N = 5 and those for N = 8. Somewhat
fortuitously, the results for N = 2 also almost coincide with the
"true" curve. Figure 5 shows the convergence of the temperature
distributions. The Lobatto-point results for N = 2 and N = 3 are
compared with the curves for N = 8 at the bearing exit, and at the
halfway point.

Reverse convection has been a source of difficulty for some
investigators. Accordingly, we show in Figs. 6 and 7 some calcula-
tions for a high film-thickness ratio of 4. Note the rapid
variation of temperature in the bearing inlet --- incoming
temperatures are taken at an entrance value of 0, whereas tempera-
tures in the backflow region originate from a region where viscous
heating has occurred. As shown in Fig. 1, Lobatto interpolation is
particularly suited to cope with such variation. The two-tempera-
ture version (N = 2) of our program performs surprisingly well.

All of the foregoing calculations are for a one-dimensional
bearing, run with the program, however, as a two-dimensional wide
bearing. The same cases were also solved earlier by a one-dimen-
siunal procedure' embodying Lobatto-point methods. But when
extended to two-dimensional problems, that earlier procedure proved
to be persistently unstable. To deal successfully with the added
dimension, the present method was devised. Figures 8, 9 and 10 show
some sample "true" two-dimensional results obtained with a square
slider bearing.

We intend to continue this investigation by engaging in some
parametric studies and by coupling the new technique to:

inlet-groove temperature distribution
cavitation
heat conduction in the bearing body

9. ACKNOWLEDGMENT:
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APPENDIX:

PRESSURE DISTRIBUTION FOR DOWSON-HUDSON PROBLEM

x/L pressure, N/m2

0 0
.1 3545479
.2 6434485
.3 8755968
.4 1.051984E+07
.5 1.167347E+07
.6 1.209784E+07
.7 1.158809E+07
.8 9815331
.9 6259130
1 0

TEMPERATURES OBTAINED FOR DOWSON-HUDSON PROBLEM

x/L
0 0.2 0.4 0.6 0.8 1.0

-1 0 0 0 0 0 0
-. 9195339 0 1.883201 3.275796 4.859227 6.956678 9.435757
-. 7387739 0 5.325756 9.360686 13.81515 19.56049 26.13743
-. 4779249 0 7.951722 14.41125 21.01087 28.58318 36.01018
-. 165279 0 8.313656 15.44364 21.92048 27.68786 31.61222
.165279 0 7.881326 14.21572 19.14167 22.08036 22.90305
.4779249 0 7.5885 12.91233 15.74303 16.07165 15.18215
.7387739 0 6.967654 10.07563 10.47426 9.308805 8.233334
.9195339 0 3.865244 4.300633 3.853627 3.094525 2.774959
1 0 0 0 0 0 0
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Figure I Schemet.ic Diagram ot Slider B~earing
(Note selection of coordinates)
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